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Abstract 

For an exact k-linear category ~2 with a duality functor, the dihedral homology of SZ’ is 
defined. We show that when i E k, the image of the generalized Chern map from the U-theory of 
.c4 to cyclic homology, lies in a direct summand which is the dihedral homology of .G?‘. When 
.d is the category of finitely generated projective A-modules over a k-algebra A, we recover the 
early results of Cortinas (1993) and Lodder (1992). The approach we adopt here is more 
categorical, inspired by McCarthy’s work (1992). 

0. Introduction 

All rings (algebras) are assumed to be unitary and all modules right modules if not 

otherwise specified. All categories are assumed to be small categories. 

Let A be a k-algebra where k is a commutative ring. The cyclic homology and 

cohomology of A was first developed by A. Connes as a non-commutative substitute 
of De Rahm cohomology and he constructed a Chern character map with values in it. 
Jones and Goodwillie generalized this to a Chern map which has its values in negative 
homology. 

Suppose A has an involution a -+ a which acts trivially on k, i.e., a’ = 
u, a + b = ii + 6, ab = 6ii and Z = tics ‘d’cr E k. The involution can be used to construct 
another variant of cyclic homology, which is called dihedral homology. It is shown in 
[2,9] that if f~ k, then the composition, forgetful map from L-theory to K-theory 
followed by the generalized Chern map, has its image in dihedral homology. 

A categorical approach was instituted for cyclic homology by McCarthy (see [lo]) 
and as in the case of K-theory it helped shed new light on the subject. In particular he 
constructed the generalized Chern map, the so-called Jones-Goodwillie Chern map, 
in a straightforward manner. 
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In this paper we are going to show that we can do the same for a k-linear exact 
category. 

If d is a k-linear category with a duality functor, we can construct dihedral 
homolgy for it. If the category happens to be the finitely generated projective modules 
over a k-algebra with involution, then we show that the categorical definition agrees 
with the usual one. 

If & is an exact k-linear category with a duality functor such that all short exact 
sequences split, then copying Quillen’s S -‘S construction, we can extend the defini- 

tion of L-theory to such a category. In that case we define a generalized Chern map 
from L-theory to cyclic homology. In Theorem 4.5 we show that if f~ k, then the 
generalized Chern map lies in dihedral homology. In particular this gives a new 
categorical proof of the result in [2,9] mentioned above. For the general case of an 
exact category we will look at another part of Karoubi’s L-theory. 

For a k-algebra A with involution, the forgetful map and hyperbolic map between 
the K-theory and L-theory provide basic relations between these two theories. 
M. Karoubi is the first to systematically study these two maps and he calls the 
homotopy fiber of the hyperbolic map K(A) +,L(A) the U-theory of A, denoted as 

$(A). This fibration has been used to derive many results for these theories. This 
U-theory also has a categorical construction [l, 12, 141. Unlike the SP’S-construc- 
tions of L-theory, which only makes good sense when the short exact sequences in the 
exact category are all split, the U-theory generalizes well to any exact category with 
a duality functor. From this point of view, U-theory seems more natural than 
L-theory. 

For an exact k-linear category with a duality functor we define the generalized 
Chern map from U-theory to cyclic homology and show (Theorem 4.3 and Corolary 
4.4) that if 3~ k, the image of the map lies in the dihedral homology. 

Here is a brief account of the contents. In Section 1 we use Quillen’s Q-construction 
to define cyclic homology and its variants for a k-linear category. This is comparable 
to the construction in [lo] which uses the Waldhausen S-construction. In Section 2 
we review the definitions of U-theory for an exact category with a duality functor and 
in Section 3 we show how to define dihedral homology for such categories. In Section 
4 the two main results of this paper, Theorems 4.3 and 4.5, are proved. 

1. Q-Construction for cyclic homology and its variants 

Let A be a k-algebra where k is commutative ring, and let A = A/k. As usual A@“” 
(resp. A@‘) will denote the tensor product of n copies of A (resp. A) over k. 

Let C,(A)= AmA@‘” and let di: C,,(A) + C,_,(A) be 
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Then (C(A), di, si) is a simplicial k-module. There is another degeneracy map 
(usually called the extra degeneracy) s : C,(A) -+ C,, ,(A) which is given by 
s(&J 0 ... @a,)= l@u()@ ... @a,. 

The Hochschild homology of A, HH,(A), is defined to be homology of the chain 
complex (C(A), b) where b = Cl=, (- l)“di. 

Let C,(A) = A @ A@” = C,(A)/D,, where D,(A) is the sub k-module of C,(A) 
generated by all elements of the form a0 @a, @ ... @a, where ai = 1 for some 
1 I i I n. Equivalently, D, is the sub k-module generated by the images of the 
degeneracy maps si. The chain complex (C(A), b) is called the normalization of 
(C(A), b) and it is well known that they have the same homology. For a ring with 
involution (resp. a category with a duality functor), it is (C(A), b), not (C(A), b), that 
behaves well with respect to the involution (resp. duality functor). So we will mainly 
work with normalization and think of HH,(A) as H,(C(A), b). 

To define the cyclic homolgy of A, let t : C,(A) -+ C,(A) act by 

t(uo@ ... @a,)=(- l)“U,@U~O ... @a,_, 

and let N = 1 + t + ... + t”. In the normalization C(A), the Connes boundary map 
(which we still denote as B) is given by B = s 0 N, and satisfies B 0 b + b 0 B = 0 (see 
[7]). This yields the following double chain complex: 

h I 
Leo(A) 

p=-1 p=o p=l 

We use BP(A) to denote the total complex of the above double complex, K(A) to denote 
the total complex of the double complex which contains those columns where p 2 0, and 
BN(A) to denote the total complex of the double complex which contains those columns 
where p I 0. From these three chain complexes we get cyclic homology and its variants: 

HP,(A) = H,(BP(A)) periodic homology, 

HC,(A) = H,(BC(A)) cyclic homology, 

HN,(A) = H,(BN(A)) negative homology, 

For more details see [7]. 
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A similar procedure combined with Waldhausen’s S.-construction was used by 
McCarthy in [lo] to define these homologies categorically as follows. 

Suppose d is a k-linear category, i.e., for all A, BE &, Hom(A, B) is a k-module, and 
compositions of morphisms are k-bilinear. Let 

C,(d) = @Ho%&, A,) OkH9Z4A2, A,) Ok ..’ Ok~o%&l, A,) 

where the direct sum runs over all (A,, AI, . . , A,) E Obj(d)n+ ‘. We have maps di, Si, 
given by 

and 

%(fO@ ‘.. 0.h) = 
i 

foO.‘.OfiOida,+,Ofi+lQ...Ofn ifOIiIn--1, 
foe ... ofn oid 

‘6 if i = n. 

Then (C(d), di, si) is a simplicial k-module and (C(d), b) is a chain complex, where 
b =Cy=, di. 

We then have the map given by t(fe @ ... @ fn) = (- l)“(f” Of0 63 ... 0 fn_ r). 
Then (C(d), di, Si, t) is a cyclic k-module. Let N = Cl=, t’. Finally we have the extra 
degeneracy map: 

s(fo 0 ... @fn)=idAo@fo @ ... @fn. 

As in the ring case let C,(d) := C,(d)/D,, where D, is the sub k-module generated 
by the images of the degeneracy maps si (Note: the special degeneracy map s is not 
included). This gives us the normalized chain complex (C(d), b) (we do not change the 
notation and still write the map as b). Let B = s 0 N : C,(d) + c,, + 1 (~2). Then we have 
b 0 B + B 0 b = 0. So we can form the double complex: 

b 

I 

b 

I 

b 

I 

+-Q,(d)~C,(d)Le,(d) 2- 

b 

I 

b I b I 'Bc2(d)~c&d)~-c&d) 
b I b I ~C,(d)~C,(d) 
b I .Bc&q 

p=-1 p=o p=l 

As before BP(&) will denote the total complex of the above double complex, BC(d) 
will denote the total complex of the double complex which contains those columns 
where p 2 0, and BN(d) will denote the total complex of the double complex which 
contains those columns where p I 0. 
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Recall Waldhausen’s S.-construction for an exact category & [15]. S.&’ is a sim- 
plicial category where S.(d) is the category whose objects are all the sequences of 
admissable monomorphisms of length n, along with choices for all quotients: 

*HAIHAzH ... HA, (we supress writing the choices for quotients), 

and morphisms are the obvious ones. If d is an exact k-linear category, then each 
S,(d) is a k-linear category. Hence we can apply the above constructions c, BC, BP, 
Bm to each S,(.&). Since they are all functorial, we have simplicial complexes, C(S.&), 
BC(S.&), BP@.&) and BN(S.d). Hence each can be made into a double chain 
complex. From these double chain complexes we can define: 

HH,(&) = H, + i (Tot(C(S.&))) Hochschild homology, 

HP,(d) = H, + i (Tot(BP(S.d))) periodic homology, 

HC,(&) = H, + i (Tot(BC(S.d))) cyclic homology, 

HN,(&) = H, + 1 (Tot(BN(S.zz?))) negative homology. 

It is shown in [lo] that when A is a k-algebra and PA is the exact k-linear category of 
all finitely generated projective A-modules, HH,(A) = HH,(pA) and the same is true 
for HP,, HC, and HN,. 

The Dennis trace map and the Jones-Goodwillie Chern maps are defined in [lo]. 
Furthermore, it is shown in [lo] that when d is PA, where A is a k-algebra, these two 
maps are the same as the usual maps for the algebra A. 

The Dennis trace map D: K,(d) + HH,(d) is induced by the map 

where id sends each A E S,(d) to idA E Homsqc,,(A, A) c Co&(&‘). 

The Jones-Goodwillie Chern map, denoted as J - G: K*(d) -+ HN,(aZ), is ob- 
tained by the composition 

S.d -5 &,(BNS.d) + B~S.~, 

where a sends each A ES,,(&) to (idA, 0, 0, . . . ), and Z,(B~S.&‘) are the O-cycles of 
Bii’S.c@‘. 

For more details and other wonderful properties see [lo]. 
For our purpose we need a Quillen’s Q-construction for HH,, HP,, HC,, HN, of 

an exact k-linear category. Let us first recall Quillen’s Q-construction. 
Let & be an exact category. QS is the category which has the same objects as d, 

but for defining the morphisms in Q& let us introduce some equivalences. Two 
diagrams in d 

Me-Ml-N and M+M”HN 
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are said to be equivalent if there is an isomorphism 8: M’ -+ M” such that the 
diagrams 

M+ M’HN 

commute. Then a morphism in Qd from M to N is defined to be an equivalence class 
of a diagram M (t M’ H N, for some M’ in Q&. 

In d two admissible monomorphism N1 H N and N2 H N are said to be equiva- 
lent if there is an isomorphism 8: N1 + N2 such that 

N, - N 

v 
N2 

commutes. Then a subobject Ni of N is an equivalence class of an admissible 
monomorphism N1 H N, denoted by N1 c N. Using this we can specify a morphism 
inQ~fromMtoNby(N,,N,,cp)whereN1cN,cNandcp:N,/N1~Misan 
isomorphism. 

Consider now the bicategory, bi(Q&), whose objects are the objects of d, horizon- 
tal morphisms are morphisms in Q._&‘, vertical morphisms are morphisms in d, and 
bimorphisms are all diagrams: 

wheref, g are morphisms in QzZ, a, b are morphisms in ~2, and the diagram commutes 
in the following sense. 

If f is denoted by N1 c N2 c N, cp: N2/N1 -E+ M and g is denoted by 
Q1 c Qz c Q, $ : Q2/Q1 1 P, thenf 1 N2 : Nz -+ Qz,f 1 N1 : N1 -+ Q1 and the diagram 

commutes. 
Let Q.-QI be the horizontal nerve of bi(Qd). More precisely, Q.&’ is the simplicial 

category (Q,,d, di, si) as follows. Qn&’ is the category whose objects are all sequences 
of length n in Q-01 
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and a morphism between two such sequences is a family of vertical arrows each of 

which is a morphism in &’ 

MO - MI ----+ ... M, 

1 I I 
P, - P, - ..’ P, 

such that each square commutes in the above sense. The face maps and the degeneracy 

maps are the same as those for the nerve of QzI’. 

Clearly when d is a k-linear category, each Q,&’ is also a k-linear category. 

Therefore, we can apply the constructions e, BC, BiV and BP to each Q,,&. Then we 

can apply them to Q.&’ to obtain double chain complexes. With this we can define 

homology by 

HH,&zZ) = H, + 1 (C(Q.&)) Hochschild homology, 

HP,(&‘) = H, + 1 (BP(Q.&)) periodic homology, 

HC,(&‘) = H, + 1 (BC(Q.&)) cyclic homology, 

HIV,(&) = H, + 1 (BN(Q.&‘)) negative homology. 

Proposition 1.1. Let _G? be an exact k-linear category. Then the two definitions, one by 
the Q.-construction as above, and the other by the S.-construction as given by McCarthy, 
of the Hochschild, periodic, cyclic and negative homologies of .d are the same. In 
particular, if A is a k-algebra then 

HH, (A) = H, + I (C(Q.~A HP,(A) = fL+.+,(B~(Q..T2), 

HCJ4 = ft+.+,(B~(Q.~~h HN,(A) = H,+dB~(Q.EiN 

where ??* is the category of all finitely generated projective A-modules. 

Proof. We mimick Waldhausen’s proof that the two definitions of K-theory of an 

exact category by the Q-construction and the S.-construction are equivalent [15, 1.91. 

For the simplicial chain complex C(S.d) let C(Y.,oZ) denote the corresponding 

edgewise subdivision. As in [15] it is not too hard to check that for each n, the k-linear 

category Si& = S 2n+l& is equivalent to the k-linear category Q,&. So there is 

a special homotopy equivalence between the chain complexes e(SizZ) and C(Q,zZ) 

[lo, proposition 2.4.11. Therefore we have a homotopy equivalence between the total 

complexes of C(Se.&‘) and c(Q.d). From this we have 

H,(C(Q.&‘) E H*(C(Se&‘)) = H,(C(S.&)). 

There are similar proofs for HP,, HC, and HN,. 0 

Similar to [lo] we can define the Dennis trace map from K,(zx!) to HH,(d) and 

the Jones-Goodwillie Chern map from K,(d) to HiV,(&‘) by using our Q.-construc- 

tion in place of the S.-construction. 
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The Dennis trace map will be induced by the composite 

NQdA Co(Q.d) c c(Q.d) 

and the Jones-Goodwillie Chern map will be induced by the composite 

NQd a Z,(S~(Q.S)) c S~(Q.S), 

where NQ& is the nerve of QRZ. 
It is clear that by the edgewise subdivision theorem [ll, Proposition A.11 and the 

equivalence between the categories S 2n+ ld and Q,&’ for all n, the definitions of the 
Dennis trace map and the Jones-Goodwillie Chern map using the Q.-construction, as 
above, is equivalent to the definitions given by McCarthy using the S.-construction. In 
particular when A is a k-algebra and d is PA, we get the usual Dennis trace map and 
Jones-Goodwillie Chern map. 

2. U-theory of exact categories with duality functors 

Let d be an exact category with a duality functor. A duality jiunctor is a con- 
travariant exact functor * : d + d such that there is a natural isomorphism 

(ihf)MEd :id--+ *o* with iGoiM. = idMM’ for all ME&. Fix E = f 1. An .s-hermitian 
module in d is a pair (M, h) with ME d and h : M + M * such that h = sh*. (M, h) is 
called non-singular if h is an isomorphism. 

Based on Giffen’s unpublished idea, Uridia in [ 141 defines the U-theory of an exact 
category with a duality functor as follows. Let E W&’ be the category whose objects are 
all non-singular s-hermitian modules. A morphism in ,Wd from (M, h) to (N, g) is an 
equivalence class of the diagram M L M’?+ N where i (resp. j) is an admissible 
monomorphism (resp. epimorphism) in d such that the following is a bicartesian 
square in d: 

M’& N 

j I I i*og 

Two diagrams M tc M’ H N and M ++- M” +-+ N are equivalent if there is an 
isomorphism 8 : M’ + M” such that the obvious diagram commutes. For any admis- 
sible monomorphism N1 H N with (N, g) a non-singular s-hermitian module, let N:, 
be the kernel of the composite N-5 N* --H NT. When N1 c N:, we call N1 a total 

isotropic subobject of N. 
In the above bicartesian square, if we let N1 = ker j, then N: = M’. Hence any 

morphism in ,W&? from (M, h) to (N, g) can be identified by (N,, cp), where N1 c N is 
a total isotropic subobject of N and cp: (N:/N,, g) + (M, h) is an isomorphism of 
s-hermitian modules. 
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Definition (Uridia [14]). Let d be an exact category with a duality functor. The 
U-theory of d is defined to be the loop space of the classifying space of EWd, i.e., 
U(d) = 521,Wdl. Denote ,U,(&) = r&U(&)) = TC,+~(~W~). 

Charney and Lee [l] show that if A is a k-algebra, f E k and PA is the exact category 
of finitely generated projective A-modules with the duality functor * = Hom( - , A), 

then there is a homotopy fibration sequence 

EU(‘P,4) -+ K(A) -+ ,I@). 

So ,U(PA) is equivalent to the ,U(A) defined by Karoubi in [6]. 

Remark 1. E Wd is not connected in general. We know that Q 1 E Wd 1 only depends on 
the subcategory of cWd made up of all the metabolic &-hermitian modules. The 
classifying space of this subcategory is the connected component containing 0. One 
reason, besides others, for studying the full category &Wd is that rrO( I EWd I) is the 
usual Witt group. 

Remark 2. If d is an exact category with duality functor for which short exact 
sequences are not necessarily split, then there is currently no definition for the 
L-theory of that category. For these general categories it seems that U-theory is more 
natural than L-theory. Also, if needed, we could introduce L-theory as the delooping 
of the homotopy fibre of the map ,U(d) + K(d), which comes from the forgetful 
functor. 

By forgetting the s-hermitian form, we have a natural functor from EWd to Qd, 
and hence a map N,Wd’ + NQd. Composing this with the Dennis trace map and the 
Jones-Goodwillie Chern map we generalize these maps into U-theory: 

D : ,U,b4 + HH,W4), 

J - G:,U,(d) --+ HN,(d). 

In Section 4 we will show that when f E k, D and J-G factor through involutive 
homologies. The definitions of these homologies will be given in Section 3. 

3. Involutive homologies 

The involutive homologies considered below are more or less well known, several 
authors considered them and used slightly different notations (see, e.g., [3, 7-91). Let 
E be a chain complex of k-modules. An inoolution on E is a chain map y : E -+ E such 
that y2 = idE. Let +Eh denote the total complex of the double complex: 
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and let _Eh denote the total complex of the double complex: 

l+Y 1-y E+-E-E?+YE!_Y . . . . 

We call the homology of +Eh the plus-involutive homology of E and denote it by 
+ H:“(E), and call the homology of _ Eh the minus-involutive homology of E and denote 
it by _ HP(E) (+ H:“(E) and _ HP”(E) can be understood in terms of group homology 
of Z/2, see [7]). There is a natural map from H,(E) to +H:“(E) (resp. -H:“(E)) 
induced by the map sending E to the first column of +Eh (resp. _Eh). 

When 5 E k, we have maps: 

ESE and E (1 -tY)/Z 
- E, 

with f(l - y) + $1 + y) = ids. So E = Im((1 - y)/2) 0 Im((l + y)/2) and the two 
summands are quasi-isomorphic to _Eh and +Eh, respectively. Hence 

H,(E) = +H$“(E) 0 -H:“(E). 

The following is a well known fact. 

Lemma 3.1. Let M and N be two double complexes and a: M + N a chain map. If on 
each column (row) a : M,, * + N,, *(a : M,,, -+ N *,J is a quasi-isomorphism then a is 
a quasi-isomorphism. 

Lemma 3.2. Let E and F be two chain complexes and suppose y is an involution on E, 
z is involution on F. If 01: E + F is a quasi-isomorphism such that CI 0 y = z 0 CI, then 

CC: + Eh-+ +Fh and u: _Eh + _ Fh are also quasi-isomorphisms. 

Proof. Since CI is a quasi-isomorphism from each column of + Eh to the corresponding 
column of + Fh, by Lemma 3.1, +Eh and +Fh are quasi-isomorphic. The same is for 
_Eh and _Fh. 0 

Lemma 3.3. Let E and F be two chain complexes and y an involution on F. If a : E + F is 

a chain map such that CI and y 0 CI are chain homotopic, then the composite 

H,(E)“i-, H,(F) + -H:“(F) sends H,(E) into the 2-primary part of -H:“(F). In 
particular if4 E k, then the composite map is zero, which means that Im(a,) c + H:“(F). 

Proof. First assume +E k. Since a and y 0 M are chain homotopic we have 
a, = y, oc(* : H,(E) + H,(F), e.g. (1 - y)* ~a* = 0. We have 

H,(F) = Im(1 + y), 0 Im(1 - y)* = +Ht”(F) @ -H:“(F). 

Therefore we have cr*(H,(E)) c +HF(F). 
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For the case where i is not an element of k, simply localize at 2. By the above 
calculation, the composite H,(E) + H,(F) + -II, i”“(F), after localizing, is the zero 
map. In particular, the composite sends H,(E) to the 2-primary part of -H:“(F). 0 

Let A be a k-algebra with an involution a + a. Define y : C,(A) + C,(A) by 

Loday [7] shows that y 0 b = b 0 y and y 0 B = - B 0 y. This means that 
y : C,(A) -+ C,(A) IS an involution. We call +HHt”(A) = +Ht”(C(A)) the plus inuolu- 
tive Hochschild homology (in terms of the group homology of Z/2, it is called the 
Z/2-equivariant Hochschild homology, see [7]). 

In order that y induces an involution on BP(A), Be(A), BN(A) we need to adjust the 
sign of y. The new action, which we denote as z, is (- l)py on the pth column (see [3]). 
+H:“(BC(A)) is called the dihedral homoZogy of A. We will call +HF”(BP(A)) and 
+H$“(BN(A)) the plus inuolutive periodic and negative homology of A (the last is also 
called quadrant II dihedral homology, see [7]). 

The construction of the above involutive homologies can be extended to define 
involutive homologies for an exact k-linear category with a duality functor. Suppose 
~2 is a k-linear category with a duality functor. In Section 1 we described the chain 
complexes C(d), BP(d), K(d), BN(&). As in the ring case we can define 
y : C(d) + C(d) by 

fo Of1 0 ... Of” +(- l)n(n+1)‘2f0* @fn* @ .” Ofi*. 

it is easy to check that y 0 b = b 0 y and B 0 y = - y 0 B, which means that y is an 
involution on C(S). Once again by the same sign provision, we can induce the 
involution z on BP(d), BC(&) and Bm(&‘). 

Now let d be an exact k-linear category with a duality functor. Then the duality 
functor of c4e induces a duality functor on Q&, for all n. More precisely, for 
a morphismf: M + N in QS, iff is represented by M (c M’ H N, then let the map 
f”.M*+N* in Qd denote the map represented by M* H M’* ft N*. Note that 
this does not induce a duality functor on Qd, since the above is not from N * to M *. 
But we can use it to induce a duality functor on Q.&. For an object M in Q,,&, 

M=:M,&M,&...I.,M, 

define the dual of that object as 

For a morphism (ao, . . . ,a,): M + P, we define the dual as (a:, . ,a,*):P* -+ M*. 
Clearly this defines a duality functor on Q&‘. 

Now that Qn& is a k-linear category with a duality functor, we have the involutions 
y and z on C(Q,,&), BC(Q,,&), Bp(Qn&‘) and B~(Q,&‘). This duality functor is also 
compatible with the simplicial structure of Q.d$, so the induced involutions are also 
compatible with the simplicial structures of ~(Q.J&‘), BP(Q.sd), Bc(Q.sZ) and 
Bm(Q.&). 
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Definition. If ~4 is an exact k-linear category with a duality fun&or, then we define: 

+HH~“(&‘) = + HrY 1 (c(Q.&‘)) f involutive Hochschild homology of -r4, 

+ HP~“(sZ) = + HtY 1 (SP(Q.&)) + involutive periodic homology of d, 

+ HN:“(1;4) = + H$ 1 (Bm(Q.&)) + involutive negative homology of d, 

+ HCg”(d) = + Hty 1 (BC(Q.&)) dihedral homology of &‘. 

We will also write dihedral homology in the standard notation HD,(d) = 

+ HC:“(d). 

Remark. We can also use the S.-construction to define the involutive homologies for 
an exact k-linear category d with a duality functor * . The duality functor induces 
a duality fun&or for each of the S,d by defining ( * ++A1 H A2 -+ ... ++A,)* as 

Then apply to S.& the same process used to define the involutive homologies of QJ. 
By passing to edgewise subdivision, as in the proof of Proposition 1.1, we see that the 
involutive homologies of S.A? and Q.& are the same. 

Proposition 3.1. Let A be a k-algebra with involution “ - “, and let PA be the category of 

all jinitely generated projective A-modules with duality finctor * = Horn,,, , A). Then 

the involutive homologies of A are the same as the involutive homologies of .YA. 

Proof. By the above note we can define the involutive homologies of pa using 
C(S.YA). From [lo] we have a chain map from C(A) to e(S.YJ which is a quasi- 
isomorphism. The map comes from the inclusion 

C,(A) = A @ A @’ = Hom,(A, A) @ Hom,(A, @n c c,,(S,$J. 

Furthermore, we can see that the chain map commutes with the involutions on C(A) 

and C(S.YJ. So by Lemma 3.2 we have that the involutive homologies of A are 
isomorphic to the involutive homologies of pk. 0 

4. Chern maps 

Let J&J be an exact k-linear category with a duality functor *. Then * induces 
a covariant functor v : QA? + Q&’ by sending the object M to M *, and sending the 
morphism Mtt M’++N to M*-M’* cc N*. Clearly v2 = id. This induces a self 

map on the classifying space of Q& and thus an endomorphism on K(d). We will still 
denote it as v and call it an involution on K(d) (cf. ES]). 
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Recall that the Dennis trace map and the Jones-Goodwillie Chern map are induced 

by 

D : NQ.&’ + c,(Q.&) c e(Q.zZ) 

J - G: NQ.d -+ Z,(B~(Q.d)) c BN(Q.d). 

We can see that y 0 D = D 0 v and z 0 (.I - G) = (J - G) 0 v, i.e. the Dennis trace map 
and the Jones-Goodwillie Chern map commute with the involutions on K(d), 
HH(&) and HIV(d). 

Let F :,Wd + QzZ denote the forgetful functor. We will still use F to denote the 
map from ,U(d) = SZI ,W& I+ 0 ( Q& 1 = K(d) induced by the forgetful functor. 

Lemma 4.1. There is a natural isomorphism i between the jiunctor vo F and 
F:,Wd+Q&. So VOF = F:,U,(d)+K,(d). 

Proof. For any object (M, h)E,W&, we will define the natural isomorphism by 
i(M,hI = h: F((M, h)) = M + M* = v 0 F((M, h)). We would like that for any morphism 

from (M, h) to (IV, g) in ,W&, represented by M ++- M’ H N, the following diagram 

commutes in Qd: 

M + M’ H N 

h I 9 1 
M* H M’* ++- N* 

But this is equal to saying that the following diagram is a bicartesian square: 

M’, rN 

g1 
N* 

I 
M&M* +--+M'* 

That this is a bicartesian square follows directly from the requirement imposed on 
morphisms in ,W&. 

The above gives us that v 0 F and F are naturally isomorphic functors, hence the 
maps they induce on the classifying spaces are homotopic. Therefore 
VOF = F:,U,(&))+K,(&). 0 

Theorem 4.2. Let d be an exact k-linear category. Then the image of the composite map 
,U,(&) 3 HH, (d) + _ HHt”(&) lies in the %-primary part of _ HHc”(&). In particu- 
lar ifLf4~ k, then the Dennis trace map D maps ,U,(&) into + HHt”(&) c HH,(&‘). 
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Proof. We pointed out at the begining of this section that for the Dennis trace map 
D:NQ.& -+ C(Q.zzf’), we have yo D = Do v, where y is the involution on C(Q.&) 
induced from the involution on &‘. Putting this together with Lemma 4.1 we have that 
D 0 F 2: y 0 D 0 F: ,U(&‘) + C(Q.d). Now using Lemma 3.3, we have the results of our 
theorem. 0 

Using the same proof, with J - G in place of D, we get the following: 

Theorem 4.3. Let RI be an exact k-linear category. The image of the composite 

EU*(d)J-G HN*(d) + _HNt”(&) lies in the 2-primary part of _HNt”(d). In 

particular if +E k, then the Jones-Goodwillie Chern map J-G maps EU.+(YQI) into 

+HNP(&q c HIV*(d). 

Let x,, be the composite of chain maps 

Z~~(Q.SZ) c BP(Q.d) = E BC(Q.d) [2n] --+ BC(Q.d) [2p] 
n 

Clearly xp commutes with the involutions. This gives us the induced maps: 

xp : HN, (4 -+ HC, + &44), 

+x,, : + HIV;“(d) + + HC;: &d) = HD, + &d), 

-xp : _ HIV:“(d) + _ HC:: 2(d). 

When &E k, we have xp = +xp 0 _xp. 
Consider the composite: $*(&)?Z% HIV,(d)& HC,+zp(d). We will still call it 

a Jones-Goodwillie Chern map. From Theorem 4.3 we have: 

Corollary 4.4. Let & be an exact k-linear category. Then the composite 

cU,(&) J-G, HC, + z~(s@‘) + - 1 HC::: zP (~2) has its image in the 2-primary part of 

_,HC~~,,,(d). When fEk, the Jones-Goodwillie Chern maps send ,U,(&) into 

HD y + &4 = HC, + z,(d). 

Suppose d is an exact category with a duality functor in which all short exact 
sequences are split. As Karoubi did in the ring case we can mimick Quillen’s 
S-‘S-construction to define the L-theory for d. There is also an analogy of the 
Q-construction which can be used to define the L-theory for such a category, and the 
two definitions by Q and S- ‘S constructions are equivalent (see [13]). In more detail, 
let d be an exact category with a duality functor and let E = + 1. Define ,Q& in the 
following way. The objects are non-singular s-hermitian modules (M, h) and a mor- 

phism Of, h) --) (N, g) is given by ((Ml, h,), (M2, hd, cp), where (Ml, h), 
(M2, h2) E EQ~ and cp : (M, h) @ (M,, h,) 0 (M,, h,) + (N, g) is an isomorphism of 
.s-hermitian modules. Then the L-theory of d is defined by ,L(d) = Q 1 ,Qd 1. 
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The forgetful functor F from EQ&’ to Q_zz’, which simply forgets the s-hermitian 
forms, induces a map J(d) + K(d). Using a similar proof to the one used for 
U-theory, we have: 

Theorem 4.5. Let & be an exact k-linear category with a duality finctor such that all 

short exact sequences split and $E k. Then the image of the composite 

,L*W)F- K*(d) D, HH,(&) = +HHg”(&) @ _HHp(&) lies in +HH:“(&) 

and the image of the composite ,L,(d)z K&@‘) J-G, HC, +&@‘) = 
+ HC’,““, *r(d) @ _ HCty 2p(.&) lies in + HCty 2p(yG4) = HD, + 2p(&). Similar statements 

can be made for HN, and HP,. 

Proof. The key here is to prove an analogy to Lemma 4.1. That is, we must show that 
the functors v” F and F from EQ& to QS are naturally isomorphic. For any 
(M, h) E ,QzZ, let the natural isomorphism i(M,hj = h : F((M, h)) = M + M * = 

v 0 F((M, h)). To see naturality let us note that for any morphism from (M, h) to (N, g), 
given by ((M, , hI ), (M,, h,), cp), the following diagram in QsZ commutes: 

M u-- MOM, H M@MI@MZ+ N _ 
h ” 

I 
9 

I 

z 

M* HM*@M+M*@M:@M;+N* _ 

Remark. As we mentioned in the introduction, this provides another proof of a result 

in [2,9]. 
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